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Abstract: An active method of vibration control of a smart
sandwich plate (SSP) using discrete piezoelectric patches
is investigated. In order to actively control the SSP vibra-
tion, the plate is equippedwith three piezoelectric patches
that act as actuators. Based on the classical plate theory, a
finite element model with the contributions of piezoelec-
tric sensor and actuator patches on the mass and stiffness
of the sandwich plate was developed to derive the state
space equation. LQR control algorithm is used in order
to actively control the SSP vibration. The accuracy of the
present model is tested in transient and harmonic loads.
The applied piezoelectric actuator provides a damping ef-
fect on the SSPvibration. The amplitudes of vibrations and
thedamping timewere significantly reducedwhen the con-
trol is ON.
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1 Introduction
Sandwich structures are used in many engineering fields,
such as aeronautics and astronautics, due to their supe-
rior mechanical characteristics such as high rigidity and
bending strength provided by the skins as well as for their
lightness and flexibility offered by the core. This flexibility
can cause significant problems, such as structural insta-
bility, and allows undesirably large vibration amplitude. It
is thus important to know the vibration characteristics for
the structures. Recently, different investigations dealt with
the vibration performances of the sandwich structures. [1]
presented the dynamic response for free and forced vibra-
tion. They measured the sandwich as orthotropic and rep-
resented elastic constants that vary with the core configu-
ration. In another study, [2] investigated a bending behav-
ior of sandwich structures using foamcore. [3] investigated
the vibration response of clamped circular monolithic and
sandwich plates under impact loading. The results show
that the sandwich plates have higher impact strength than
monolithic plates when the masses are similar.

In order to reduce the problems caused by vibrations
and to improve the structures’ efficiency and reliability,
damping and control of the undesirable vibrations are re-
quired. Conventional methods such as passive damping
are widely used to reduce the structure vibration and they
consist of adding an additional viscoelastic material. This
caused a significant increase in weight that makes it un-
usable in the aerospace applications [4, 5]. A new way to
damp the structures’ vibration called active vibration con-
trolwas introducedby the research community to overtake
theweakness of the passive vibration control. The active vi-
bration control is based on three keypoints: actuators, sen-
sors and control design. The structures are coupled with
piezoelectric sensors and actuators to create self-control
intelligent structures. The measures provided by the sen-
sors are processed by an appropriate control system that
sends a signal to the actuators, which is capable to change
the structure behavior and adapting it to the required po-
sition.

https://doi.org/10.2478/mme-2020-0005


8 | H. Serhane et al.

Various researches have focused on piezoelectric sen-
sor and actuator applications in smart structures (beams,
plates and shells). The active control of vibration for com-
posite beam distributed with piezoelectric sensors and ac-
tuators was investigated by several authors as [6] and [7].
In the study conducted by [8], a numerical modeling of
composite plate with piezoelectric layers was proposed
and the authors used the classical plate theory to study
the shape control of the plate. [9] proposed a finite el-
ement model using eight-noded isoparametric element
based on the first order shear deformation theory to inves-
tigate the stretching-bending coupling effect of the piezo-
electric patches on the stability of smart composite plate.
[10] developed a finite element model based on the third
order shear theory of a composite plate with four piezo-
electric patches. [11] developed finite element to mold a
composite plate with piezoelectric patches for active vibra-
tion control based on negative velocity feedback theory.
While, [12] dealt with H2 controller for the active damping.
The controller was designed to study the control perfor-
mance of an elastic plate equipped with three piezoelec-
tric patches. In the work of [13], a comparison was made
between PID control and LQR optimal control of piezoelec-
tric bonded smart plates. The results of this study showed
that the LQR control is better. The paper of [14] examined
the active vibration control based on linear quadratic regu-
lator (LQR) and negative velocity feedback for the conical
shells.

Less contributionspapers havebeenmadeonactive vi-
bration control in sandwich structures with the piezoelec-
tric materials. The first interesting study to mention is that
of [15]. Theyprovided afinite elementmodel of smart beam
containing shear actuators by modeling the skins using
classical Euler–Bernoulli beams and the core as a Timo-
shenko beam. In another study, [16] studied the piezoelec-
tricmaterial in smart sandwich structures for dynamic and
static behavior using the method of Ritz, which is based
on analytical solutions. [17] had proposed LQR algorithm
on sandwich beam with extension and shear actuators to
study the effect of extension and shear actuator to damps
the vibration of structures. However, in the work of [18],
an analytical solution was used to study a sandwich plate
with a piezoelectric core based on Raleigh–Ritz and sta-
tionary potential energy methods. Sanjay et al. (2009) de-
veloped a finite elementmodel for the analysis of three lay-
ers sandwich plate treated with Passive Constrained Layer
Damping (PCLD) and Active Constrained Layer Damping
(ACLD) to find the effect of constrained layer damping in
controlling the vibration of sandwich structure. [19] inves-
tigated the active vibration control of a free-edge rectan-
gular sandwich plate. They proposed a control algorithm

based on the (PPF) technique and in order to control the
first four normal modes.

Concerning the present work, a contribution com-
pared to the previous works is provided. An active vibra-
tion of sandwich plate with three piezoelectric patches
bonded on the top and bottom faces core is considered.
An important motivation of this work is to present a finite
element model based on the plate classical theory using
Ansys to design structure and algorithm controller (LQR)
to suppress the vibration. In the first step, the natural fre-
quencies are calculated and validated using Ansys and
Matlab software. Then, a linear quadratic regulator algo-
rithm (LQR) is developed to investigate the active vibration
control of cantilever smart sandwich plate boundary con-
ditions under two different excitations, transient and har-
monic loads.

2 Mathematical Modeling
In the following subsections, the strategy of the developed
method is described and implemented for active vibration
control of smart sandwich plate (SSP) using discrete piezo-
electric patches.

2.1 Behaviors law

Consider a sandwich plate with three layers discredited us-
ing a four-noded rectangular element, based on the clas-
sical plate theory [20, 21]. The element used include four
node finite element model with three displacement de-
grees of freedom for each node, namely the displacement
w in the z direction, two rotations φ, ψ about (x, y) axis
as well as one additional electrical degree of freedom (Φ)
for piezoelectric patches Figure 1. The three layers of sand-
wich are restricted to linear elastic material behavior and
assumed to be perfectly glued together, ensuring the con-
tinuity of the displacement field at the interfaces, in which
the cross-section remains straight after the deformation
during bending and the displacement is the same in the
three layers. If we include the nonlinearity of the core in
the model, it will face an enormous rising of the calcula-
tion time. Hence, we have proposed a linear model based
on the fact that the section shape will maintain its initial
form when the thickness is too small when we compare it
to the length and thewidth; thus, the shear effect is too low
to be considered. According to the reference [22], the differ-
ence between displacements through the thickness of the
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core (viscoelastic material) and the skins (isotropic mate-
rial) is very small.

 

             

 

 
 

          

 

 
 

        
 

        

 

Figure 1: Coordinate system of sandwich plate finite element with
integrated piezoelectric material.

Using Kirchhoff supposition, the relation between
plane stress σ and the deformation can be written as fol-
lows:

σ = [D] {ϵ} with σ =
[︁
σx σy σxy

]︁T
(1)

where [D] is the rigidity matrix and it is expressed by:

[D] = E(︀
1 − ν2

)︀
⎡⎢⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎥⎦ (2)

ν is Poisson’s ratio and Ethe Young’s modulus.
Each node of the element has a displacement w in the

zdirection, a rotationφ about x axis anda rotationψ about
y-axis.

The transverse displacement field w can be expressed
by:

w (x, y) = {p (x, y)}T {a} (3)

where the coefficients of the vectors {a} and {p} are repre-
sented by the following equations:

a = [a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12]T (4)

p =
[︁
1xyx2 xyy2 x3 x2yxy2 y3x3 yxy3

]︁T
(5)

The vector
{︀
βi
}︀
is defined as the nodal displacements

fields of an element and they are given by the following
expression (Eq. (6)):

βi =
[︀
w1 φ1ψ1 w2 φ2ψ2 w3 φ3ψ3 w4 φ4ψ4

]︀T (6)

The global displacement can be discredited by the follow-
ing expression: ⎧⎪⎪⎨⎪⎪⎩

w = pTa
φ = dw

dx

ψ = dw
dy

(7)

Substituting (x, y) coordinate values for the four nodes of
Eq. (3) and Eq. (6) in Eq. (7) yields to the following matrix
expression: {︀

βi
}︀
= [PM] {a} (8)

where [PM] is a 12×12 matrix by replacing the coordinate
values (x, y) for the four nodes:

[PM]12×12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PT (0, 0)
∂PT (0,0)

∂x
∂PT (0,0)

∂y

PT (x, 0)
∂PT (x,0)
∂x

∂PT (y,0)
∂y

PT (x, y)
∂PT (x,y)
∂x

∂PT (x,y)
∂y

PT (0, y)
∂PT (0,y)
∂x

∂PT (0,y)
∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
12×12

(9)

Therefore, the coefficient vector {a} can be computed from
Eq. (8):

{a} = [PM]12×12
{︀
βi
}︀

(10)

The coefficients of the vector {a} are the polynomial coef-
ficients. However, since the nodal displacements are vari-
able, so thesewill use the coefficients form to get the shape
function.

Substituting Eq. (10) into Eq. (3) yields:

w = [Nw]
{︀
βi
}︀

(11)

where [Nw] is the shape function matrix in the z axis given
by:

[Nw] = {p}T [PM]−1 (12)

The relation of deformation-displacement can be written
as follow:

ϵ =

⎧⎪⎨⎪⎩
ϵx
ϵy
𝛾xy

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
−z ∂

2pT [PM]−112×12
∂x2

−z ∂
2pT [PM]−112×12

∂y2

−z ∂
2pT [PM]−112×12

∂x∂y

⎫⎪⎪⎬⎪⎪⎭
{︀
βi
}︀
= [B] ×

{︀
βi
}︀

(13)
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By mathematical manipulating of Eq. (13), it is to get:

{ϵ} = −z [LK] [PM]−1
[︀
βi
]︀

(14)

[LK] =

⎡⎢⎣0 0 0 2 0 0 6x 2y 0 0 6xy 0
0 0 0 0 0 2 0 0 2x 6y 0 6xy
0 0 0 0 2 0 0 4x 4y 0 6x2 6y2

⎤⎥⎦ (15)

The displacement field u, v andw is obtained by vector {β}
as follow:

{β} = {w u v}T (16)

By substituting Eq. (14) in Eq. (16), we obtain the equation
mentioned below:

{β} = [H] [LM]T
[︀
βi
]︀

(17)

where

[LM]T1 =

⎧⎪⎨⎪⎩{︀
P
}︀T ∂

{︀
P
}︀T

∂x ∂{P}T
∂y

⎫⎪⎬⎪⎭ (18)

and

H =

⎡⎢⎣1 0 0
0 −z 0
0 0 −z

⎤⎥⎦ (19)

2.2 Linear piezoelectric equation

Considering the electromechanical behavior of piezoelec-
tric layer, the electrical potential varies linearly through
the thickness and is constant in the course of the piezo-
electric layer. Linear piezoelectric equations are used be-
cause the literature [22, 23] show that they have efficiently
predicted well the piezoelectric material behavior.

The electromechanical equations are given by:{︃
σp = ceϵp − eT Ep
Dp = eϵp + Xp

(20)

where σp, ϵp, Dp et Ep are respectively the mechanical
stress, the mechanical deformation, the electric displace-
ment and the electric field. ce, e, Xp are respectively the
matrix of elasticity, the matrix of the piezoelectric coeffi-
cients and the electric matrix.

2.3 Dynamic system equation

The general equation governing the motion of the struc-
ture with piezoelectric actuators with bonded sensors to

the surface of the structure was established by the Hamil-
ton principle.

t2∫︁
t1

δ [(K − S + we −
...w)] dt = 0K (21)

is kinetic energy, S potential energy, we and
...w the work

done by external electric and mechanical forces. t1, t2 are
the times of variation of the energy.

The kinetic energy and the potential energy of the
structure are expressed by the following relations:

K = 1
2

∫︁
V

ρ
{︁
β̇
}︁T {︁

β̇
}︁
dv (22)

S = 1
2

∫︁
v

{ϵ}T {σ} dv (23)

where
{︁
β̇
}︁
is the differentiation of {β} and dV is estab-

lished by:

dV = dVP + dVa + dVS (24)

The indices p, a and s represent the plate, the actuator and
the sensor elements, respectively.

According to [24], the global matrix equations govern-
ing the present SSP can be written as:

[M]
{︁
β̈
}︁
+
[︀
Cdamp

]︀{︁
β̇
}︁

(25)

+
[︁
Ku − KuφK−1φφKφu

]︁
{β} = − [Kφu] {Φ}

where [M],
[︀
Ku − KuφK−1φφKφu

]︀
,
[︀
Cdamp

]︀
, Kφu and [Fm] are

mass matrix, stiffness, damping, elastic-electric coupling
stiffness matrices and the applied mechanical force, re-
spectively. {β} and {Φ} denotes structural displacement
and electric potential.

Assuming that the system response is governed by the
eigenmodes, the displacement can be expressed as:

{β} = [Ω] {Υ} (26)

where {Υ} are the modal coordinates and [Ω] is the modal
matrix.

Introducing the variable X = {Υ Υ̇}T , the state space
equation for the dynamic system equation can be written
as:

Ẋ = [A] {X} + [B]{u} (27)

where [A] is the system state matrix and [B] Input control
matrix which are given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[A] =

⎡⎣ 0 I

−
[︁
M̂
]︁−1

[K̂] −
[︁
M̂
]︁−1

[ ^Cdamp]

⎤⎦
[B] =

⎡⎣ 0[︁
M̂
]︁−1

[ ^Kuφ]

⎤⎦ (28)
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where
[︁
M̂
]︁
,
[︁
K̂
]︁
,
[︁

^Cdamp
]︁
,[︁

^Kuφ
]︁

= [Ω]T([M]
[︀
KuKuφK−1φφKφu

]︀
,
[︀
Cdamp

]︀
) [Ω] and[︁

^Kuφ
]︁
= [Ω]TKuφ.

The output equations can be written as:

{Y} = [Ċ]{X} (29)

[Ċ] is the output matrix, which depends on the modal ma-
trix {X} and sensor piezoelectric stiffness matrix.

2.4 Linear quadratic algorithms

The proposed method is designed to minimize an “objec-
tive” function of a dynamic system proportional to the re-
sponse to measure the performance of the control. The
function used is given by:

J =
∞∫︁
0

(︁
{y}T [Q] {y} +

{︀
ϕa

}︀T [R] {ϕa})︁ dt (30)

where [Q]: is the output weighting matrix, [R]: input
weighting matrix.

It assumed that the most desirable state is x = 0; how-
ever, the initial condition is non-zero, so the matrix Q pe-
nalizes the state error in a mean-square sense. Similarly,
the matrix R penalizes the control effort, that is, limits the
control signals.

{︀
ϕa

}︀T [R]{︀ϕa}︀ is the scalar quantity of
the output of the system under control and {y}T [Q] {y} is
the scalar quantity of the system input.

The optimal feedback control force by
{︀
ϕa

}︀
is the ap-

plication of classical LQR control method:{︀
ϕa

}︀
= K.y(t) (31)

The gainmatrix K = R−1BTP thatminimizes J canbe found
by solving a matrix Riccati equation that given by:

[P] [A] + [A]T [P] + [Q] − [P] [B] [R]−1[B]T [P] = 0 (32)

3 Numerical modeling Ansys

3.1 Material of the sandwich plate

The sandwich plate used is rectangular. It is constituted by
three layers. The top and the bottom layer are made of the
same steel used by [21], while the core is made of polymer.

The properties of the materials constituting the sand-
wich plate are summarized in (Table 1). The geometrical
properties of the structure are noted: LX (for the length),

LY (for the width) and h (for the thickness). The mechan-
ical and geometrical properties of each layer are summa-
rized in the Table 1 bellow.

Table 1:Mechanical and geometrical properties of the layers of the
sandwich plate.

Property Plate
1-3

(Skins)

Plate 2
(Core) [25]

E : Young’s modulus, (N.m−2) 21e10 35e 06
ρ : Density, (Kg.m−3) 7810 32

ν : Poisson’s coeflcient 0.38 0.38
h : Thickness, (mm) 2 3
LX : length, (mm) 500 500
LY : width, (mm) 500 500

3.2 Piezoelectric material

The SSP considered is bounded by three piezoelectric
patches. The piezoelectric material used is composed of
lead zirconate titanate is an intermetallic inorganic com-
pound with the chemical formula Pb [ZrxTi1-x]O3 (0 ≤ x ≤
1), called PZT. The mechanical, electrical and geometrical
properties of piezoelectric patch used are summarized in
the Table 2 bellow.

Table 2:Mechanical, electrical and geometrical properties of the
piezoelectric layer.

Property Piezoelectric
(PZT)

E (Young’s modulus) (N.m−2) 69e109

ρ (Density) (Kg.m−3) 7700
ν (Poisson’s ratio) 0.3

ϵϵ (Piezodielectric constant) (Fm-1) 1.6e10−8

E (Piezoelectric stress) (NV-1 m-1 ) −12.5
C (Capacitance) (F) 6.3e10−7

lX (mm) 50
lY (mm) 50
ep (mm) 0.5
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3.3 Meshing and boundary conditions

Ansys computer code is used to perform the numerical
modeling of the systemstructure. Thefinite elementmodel
of the SSP is created in Ansys software. Two kinds of ele-
ment type are used. Three-dimensional continuumbrick fi-
nite element SOLID45 (Figure 2.a) was used to mesh the
three layers of the sandwich. SOLID5 (Figure 2.b) ele-
ment is used for piezoelectric layer and has an additional
Volt degree of freedom, which is the key of coupling the
strain field end electrical field. In fact, SOLID5 has a three-
dimensionalmagnetic, thermal, electric, piezoelectric and

structural field capability with limited coupling between
the fields. The element has eight nodes with up to six de-
grees of freedom at each node. Scalar potential formula-
tions (reduced RSP, difference DSP, or general GSP) are
available formodelingmagnetostatic fields in a static anal-
ysis. The plate was discredited into 10 × 10 finite elements.
Analysis will be done for cantilever sandwich plate with
boundary conditions presented in (Figure 2.c).

(a) Sodid 45 (Ansys) (b) Sodid 5 (Ansys)

 

             

 

 
 

          

 

 
 

        
 

        

 

(c)Meshing of the SSP with Ansys

Figure 2:Modeling the sandwich plate with Ansys.
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3.4 Algorithm of LQR control scheme

The flowchart of (Figure 3) below shows the Ansys algo-
rithm proposed for the simulation of the active vibration
control including LQR control schematic. The discrete lin-
ear time invariant state space system defined by A, B ma-
trix and the LQR gain K have been computed based on the
finite element method, MATLAB program and then imple-
mented in Ansys.

 

                

 

           

 

Figure 3: Control scheme used to validate the proposed LQR control
algorithm of the sandwich plate

4 Results and discussion

4.1 Model validation

In order to validate the present finite element model, the
first step is to develop and validate a finite element pro-
gramunderMatlab andAnsys to obtain the first six natural
frequencies of an isotropic plate made of steel. The results
found were compared with those of literature [21]. The er-
ror varies from 2 to 6% as shown in (Table 3). The error has
been estimated based on the following formula:

Error = (Present − litterature)/litterature

The table shows that the obtained results are in
good agreement, which prove the precision of the present
methodology.

In the second step of validation, aMatlab code is devel-
oped to perform amodal analysis to illustrate the eigenfre-
quencies and eigenmodes for the sandwich plate studied.
Table 4 and Figure 4 presents the results obtained of the

Table 3: Natural frequencies of skins.

Modes Present FEM
code (Matlab)

(Hz)

Code
Ansys
(Hz)

Reference
(Hz) [21]

Error
(%)

1 7.37 6.93 7.19 3
2 17.32 17.99 17.90 5
3 44.15 42.55 43.68 2
4 55.33 54.36 55.64 2
5 63.81 61.88 64.57 4
6 109.03 108.58 109.22 6

five natural modes and forms respectively. The results ob-
tained with the present developed code are in good agree-
ment with those obtained by using Ansys. The error varies
from 3 to 12%.

Table 4: Natural frequencies of the sandwich plate.

Modes Code Ansys
(Hz)

Present FEM code
(Matlab) (Hz)

Error
(%)

1 23.57 22.55 3
2 43.00 44.39 6
3 122.54 139.31 11,5
4 186.92 171.74 12

4.2 Dynamic analysis and control

Todemonstrate the capability of the LQR control algorithm
developed under Ansys Apdl, a sandwich plate with the
same properties as in Table 1 has been used as prototype
specimen. The required space state equation is defined
based on a finite element Matlab program.
The value of the state matrices A and B as well as the LQR
gain K calculated by the developed Matlab program are
given below:

A =
[︃

0 1
−0.1736e5 −0.7906

]︃

B =
[︃

0 0 0
−0.0009 0.0001 −0.0003

]︃

K =

⎡⎢⎣ 0.066e5 −1.062e5

−0.019e5 0.55e5

0.31e5 −1.60e5

⎤⎥⎦
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The gain matrix K = R−1BTP that minimizes the cost func-
tion J is foundby solving amatrix Riccati (Eq. 32). Themain
stages of programming of the LQR control are:

– Storing A and B state space matrices in Ansys Apdl
using Ansys code-specific commands:

* DIM: for the size of finite elements
* SET: for the elements defined

– Programming the state equation under Ansys Apdl
and applying the control in a dynamic analysis.

4.2.1 Fist simulation: Impulsion load

In the first vibration control analysis, the proposed con-
trol algorithms are applied to a cantilever SSP bounded
by three actuators. The smart structure is subject to an im-
pulsion load of 1N for a sampling time equal to 0.01 sec-
ond. The deflections of the plate with and without control
are presented in (Figure 4). It is clearly visible from the fig-
ure that the macro developed under Ansys is successful in
reducing the vibration in terms of amplitude and settling
time. The figure highlight that the plate vibration is rapidly
attenuated in less than 1.5 swhen the control is ON and the
damping coefficient is equal to 49%. When the control is
OFF, the vibration disappears in about 8 s and the damp-
ing coefficient is equal to 35%.

Figure 4: Transient vibration response of SSP with and without
control

The damping coefficient of the structure is calculated
with Eq. (33) presented below by the application of the log-
arithmic decrement.

ξ = 1√︂(︁
1 +

(︁
4π2
P2

)︁)︁ with P = log y1y2
(33)

where y1 and y2 are the amplitude of the first and second
peak successively.

The actuators’ voltages obtained by the control algo-
rithm are shown in Figure 5 for actuator 1, actuator 2 and
actuator 3. It must be noticed that a saturation condition
has been added to the actuators 1 and 2 to prevent their
failure.

Figure 5: Control voltage applied on the actuators

4.2.2 Second simulation: Harmonic load

The numerical results presented in Figure 6 were obtained
from Ansys Apdl code. We consider that the sandwich
plate by deforming the plate by harmonic load f = 10 ×
sin (w1t)at the center of the free edge. The vibrations are
given with and without electromechanical coupling as ob-
served in (Figure 6). The LQRmethod is effective to reduce

Figure 6: Harmonic vibratory response of SSP with and without
control
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the amplitude in harmonic load. The damping coefficient
is 15% when the control system is ON.

Figure 7 shows the feedback voltage for each actuator.
These figures reveal that the actuators 1 and 2 received the
same voltage due to the symmetry of the plate. The control
voltage is small and is easy to realize in practice.

Figure 7: Control voltage applied on the actuators

5 Conclusion
In this paper the problemof damping flexural vibrations of
a sandwich plate by using piezoelectric sensors and actu-
ators has been addressed. To this end, LQR algorithm has
been applied in the controller design through Ansys and
Matlab. This technique, which has not been considered
nor investigated in the cited literature, is developed in this
study. A finite element model based on the classical plate
theory is adopted and programmed in Matlab to achieve
the space state equation. Moreover, the obtained equation
was coupledwith LQR controller and integrated intoAnsys
throw amacro file for the case of two types of loads. The re-
sults show that the vibration of the plate is reduced with
great damping coefficient when LQR controller is applied
compared to the other without LQR controller and settling
time for the case of transient analysis and active vibration
control of a sandwich plate in harmonic load is analyzed.
It is also noticed that the settling time is decreased from 8
s to 1.5 s when the control is ON and the vibration can be
effectively suppressed.

The results obtained illustrate that the LQR control
method is effective for rapidly attenuating the vibration
amplitudes of the sandwich plates and that the control
voltage is practically achievable.
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